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We study the order-disorder phase transition and the cluster-size distribution of “living polymers” in a
lattice-hole model of a polydisperse system of semiflexible chain macromolecules by Monte Carlo simu-
lation. In two dimensions we find that the transition line in 7-u space (temperature—chemical potential)
contains a tricritical point and that the values of the critical exponents along the second-order portion of
the phase boundary belong to the Ising universality class. In three dimensions a finite-size scaling
analysis suggests that the phase transition is always first order. In both cases the chain lengths of the po-
lymers follow an exponential probability distribution although the dependence of the mean chain length
on density and temperature deviates from predictions of analytical theory.

PACS number(s): 61.25.Hq, 05.50.+q, 64.60.Cn

I. INTRODUCTION

Systems in which polymerization is believed to take
place under condition of chemical equilibrium between
the polymers and their respective monomers are termed
“living polymers.” These polymers are long linear-chain
macromolecules that can break and recombine reversibly
and so are in equilibrium with respect to their molecular
weight distribution. A number of examples have been
studied in recent years, including liquid sulfur [1-3] and
selenium [4], poly(a-methylstyrene) [5], polymerlike mi-
celles [6,7], and protein filaments [8].

The reversible aggregation of monomers into linear po-
lymers exhibits critical phenomena which can be de-
scribed by the n—0 limit of the n-vector model of
magnetism [9,10]. Unlike mean field models, the n-vector
model allows for fluctuations of the order parameter, the
dimension n of which depends on the nature of the poly-
mer system. (For linear chains n —0, whereas for ring
polymers n =1.) In order to study living polymers in
solutions, one should model the system using the dilute
n—0 magnet model [10]; however, theoretical solution
presently exists only within the mean field approxima-
tion, where it corresponds to the Flory theory of polymer
solutions [11]. For the case of semiflexible chains, Flory’s
model predicts a first-order phase transition between a
low-temperature ordered state of stiff parallel rods and a
high-temperature disordered state due to disorientation
of the chains. An extension of the model to a system of
self-assembling polymer chains [12] has been motivated
by its relevance for the nature of the glass transition, and
a number of simulational studies [13—15] have been car-
ried out recently. However, the order of the phase transi-
tion lines has not been established unambiguously so far
(most of these computer experiments were performed on
two-dimensional lattices), and a number of scaling predic-
tions [7], concerning the temperature and density depen-
dence of the average chain length, have also not been ad-
dressed.

In the present work we use Monte Carlo methods to in-
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vestigate the general features of the phase diagram of the
model which was defined earlier [14]. With the aid of
finite-size scaling, we determine the nature of the phase
transition in both two and three dimensions. A compar-
ison between scaling predictions [7] and simulational data
for the equilibrium chain-length distribution confirms the
expected exponential form of the probability distribution
function (PDF), although the density and temperature
dependence of the average chain length deviate from ex-
pected behavior.

II. MODEL

A detailed description of the model can be found in an
earlier work [14], and here we only briefly summarize the
main features. We consider regular L? hypercubic lat-
tices with periodic boundary conditions, where D is the
spatial dimension. Each lattice site may either be empty
or occupied by a (bifunctional) monomer with two strong
(covalent) “dangling” bonds, pointing along separate lat-
tice directions. These monomers fuse when dangling
bonds of nearest-neighbor monomers point toward one
another, releasing energy v >0 and forming a backbone
of self-avoiding polymer chains (no crossing at vertices).
Right-angle bends, ensuring the semiflexibility of such
chains, are assigned an additional activation energy o >0
in order to include the inequivalence between rotational
isomeric states (e.g., trans and gauche) which is found in
real polymers. The third energetic parameter w,
reflecting the weak (van der Waals) interchain interac-
tions, is responsible for the phase separation of the sys-
tem into dense and sparse phases (with different density
6) when temperature T and/or chemical potential p are
changed. w is thus the work for creation of empty lattice
sites (holes) in the system. One can define (cf. Table I)
qg =7 possible states &; of a monomer i on a two-
dimensional (2D) lattice (two straight “stiff”” junctions,
§;=1,2, four bends, §;;=3,...,6, and a hole &), and
g =16 monomer states in a 3D cubic lattice. (This model
can be mapped onto an unusual g-state Potts model and,
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TABLE I. Possible states §; of a monomer i on a 2D lattice.

— L

~ _I

in fact, this representation was actually used for the simu-
lation.)
The Hamiltonian for the model can then be written as

H=37;8S,—X(ute)s;, (1)
i<j i

where |&;|=1 for &,=1,2, ,6, and |&;|=0 (a hole).
It is important to note that the interaction constant de-
pends on the mutual position of the nearest-neighbor
monomer states, F;,7F;. Thus, for example, F;;= —w
whereas #;;= —v. The local energies €; =0 for the bends
and €; =0 for the trans segments.

The ground states of this lattice model depend on the
relative strengths of the three characteristic parameters v,
w, and o. Long chains at low temperatures are energeti-
cally favored only if v /w > 1. In reality the v/w of co-
valent to van der Waals bond energies varies roughly
from 10 to 100, and we have considered this entire range
in our choice of our parameter values. As an example of
the states which result from the simulation, in Fig. 1 we
show a “snapshot” of a typical configuration in the disor-
dered state for D =2. It is also clear that for o >0 the
chains will become stiffer with decreasing temperature
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FIG. 1. A snapshot of a typical system configuration in the
disordered state at T =0.5 after 2X 10° MCS. Here 0=0.5,
v=2.0,w=0.1,u=—2.0.
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and at temperature 7" =0 the ground state will be given
by an orientally ordered array of parallel infinitely long
rods, whereas for o =0 disoriented chains will exist down
to the lowest temperature [14]. Earlier [16] it has been
shown that the long-range orientational order does not
exist if the intermolecular interaction w is set equal to
zero. Since the case of w =0 and v+0 has been con-
sidered elsewhere [17], in which the polymerization tran-
sition alone has been studied, in the present work we
shall focus on the order-disorder transition in the case of
all three parameters v, w, and o different from zero.

III. MONTE CARLO PROCEDURE

In our simulations we use a standard Metropolis
method [18] with the number of Monte Carlo (MC) steps
per site (MCS) depending on the system size and on the
state point under consideration. For the systems de-
scribed above, finite-size effects produce visible
differences in the temperature dependence of all thermo-
dynamic parameters for all lattice sizes that we could in-
vestigate. Because of difficulties with equilibration for
large systems we restricted our study of thermodynamic
properties to L <14 in both 2D and 3D. The length of
the simulations in 2D was typically 5X10* MCS for
equilibration and from 2.05X10° MCS for L =6 to
7.5X10° MCS for L =14 for calculating averages. Be-
cause of the larger number of sites in 3D, slightly shorter
runs were used, e.g., 10° MCS for L =10.

For studies of the PDF of chain lengths far from criti-
cality, however, typically a lattice size L =60 was used so
that finite-size effects should be minimal. In our simula-
tions we compute the orientational order parameter: in
2D W=|c,—c,| (here c; denotes the concentrations of
segments in the ith state), where ¢, and c, are the frac-
tions of stiff trans segments pointing horizontally and
vertically on the square lattice; in 3D we define an or-
der parameter as W={[(c;—c,)?+(c;—cg)?+(c,
—cg)z]/Z}‘/Z, and c¢;,c,,cg are the fractions of trans
bonds pointing in the x, y, and z directions.

We compute the order parameter susceptibility y, the
fourth-order “cumulant” U =1—(W¥*) /[3(W¥?)?], as
well as the number of thermodynamic quantities, such as
internal energy E, total density 0, specific heat C,
compressibility «=(L2/kzT?)({6?)—(0)?), and the
average flexibility of the chains f =(1—c¢;—¢,)/(1—c¢y),
which is given by the ratio of the number of bends over
the total number of monomers (c,, is the concentration of
vacancies in the lattice). Since polymer chains may, in
principle, form rings, in addition to the PDF of chain
lengths and the average chain length, the average number
of rings is also calculated.
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IV. RESULTS: TWO-DIMENSIONAL LATTICES

A. Phase diagram

We have performed our simulations at various values
of the characteristic interactions, although most of the
work was done for v =2.0, w =0.1, and for both com-
paratively flexible, 0 =0.5, and stiff, 0 =2.0, chains. The
critical chemical potential at 7=0 is u,=—(v +w),
below which the lattice is completely empty. At finite
temperature due to the nonzero values of the parameters
w,v,0, the formation of long semiflexible chains couples
to vacancy creation in the system, and to a simultaneous
stiffening of the chains, so that the polymerization transi-
tion “drives” also a transition from lower to higher densi-
ty as well as a transition from a disordered into an or-
dered state [14].

The resultant phase diagram for v =2.0, w =—0.1 is
shown in Fig. 2(a) for two different values of 0. In both
cases the transition is first order at low temperatures, but
above a tricritical point T,=0.3 the transition becomes
second order. The first-order line on our phase diagram
separates ‘“dense” from the “rare” polymer solution, and
the polymerization transition occurs along the entire
order-disorder phase boundary which in 2D includes
both first-order and second-order parts. As Fig. 2(a)
shows, we find that the transition line for stiff chains rises
more steeply as the chemical potential is increased than
for the more flexible chains, and the asymptotic critical
temperature is much higher. While for p > u, the density
is quite high in both the ordered phase as well as the
high-temperature disordered phase, for u <pu, the lattice
is virtually empty up to a temperature (the Lifshitz line)
at which a rather steep increase in 6 is accompanied by
pronounced maxima in the second derivatives of the ther-
modynamic potentials. Although this line does not mark
a real phase transition, it separates a high-temperature
region of structured disordered phase (cf. Fig. 1) from
that of a very dilute disordered phase at low 7. The par-
tial alignment of chains is indeed evident in Fig. 1, with a
well defined characteristic wavelength which results in a
peak at a nonzero wave vector in the structure factor
[19].

The nature of the transition along the second-order
portion of the boundary can be extracted using finite-size
scaling. Such an analysis was carried out for different
values of chemical potential u; typical data for the tem-
perature variation of some thermodynamic quantities
with u=—1.4, and the respective scaling plots, are
shown in Fig. 3.

Usually the critical temperature of the phase transi-
tion, T,, may be determined from the crossing point of
the cumulant curves which, depending on the lattice size
L, decay more or less steeply from U=2% at T =0 to
U=0 at T— w. The data for a flexible chain system
(0=0.5) are plotted in Fig. 3. All of the lattice sizes
cross quite close together, i.e., T, =0.390+0.002, with a
value of U*=0.625+0.010, which is consistent with the
2D Ising value.

With T, thus known, a scaling plot of U yields the crit-
ical index v when all curves collapse onto a single master
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FIG. 2. Phase diagram of the 2D system for v =2.0, w =0.1:
(a) T, as a function of chemical potential i for two values of the
rigidity parameter o. The single line indicates a second-order
phase transition between disordered and ordered phases, the
double line denotes first-order transition, and dots mark the
Lifshitz line. (b) T, as a function of coverage 6 for 0 =0.5. (c)
Variation of the critical temperature for polymerization, T,
with the rigidity parameter o for u= —1.4.



6434

ANDREY MILCHEV AND D. P. LANDAU 52

0.8

0.6 -

o—olL=4
—=aL=6
o—-oL=8

0.65

0.60
0.55
P
0.50 o B
0.43 0.48 0.53
kgT/v
0.0 . .
Q@ VWO ATV ROV &
20 sooomre B TN (b)
05 1
%9%.
5,
u oL=4 ‘s
obL=6
oL=8 Y%;
aL=10 S
1.0 | vL=12 <, 1
eL=14 N
[ ]
-
[ ]
-1.5 : .
2 -1 w0 1
Log, [(T/T - 1)L 7]
1.0 , .
0.8 J
0.6 - .
¥
0.4 | 4
0.2 4
0-0 L 1 1
0.33 0.38 0.43 0.48 0.53

kBT/v

FIG. 3. Temperature dependence of ther-
modynamic quantities in the vicinity of the po-
lymerization transition in 2D with ¢=0.5,
v=2.0, w =0.1, and u= — 1.4, and for various
lattice sizes L as shown: (a) The fourth-order
“cumulant” U. The inset shows the immediate
vicinity of the cumulant crossing using a
magnified scale. (b) Scaling plot of the same
data as (a). (c) Order parameter V. (d) Scaling
plot with 7, =0.390, v=1.0, and 8=0.125. (e)
Susceptibility y. (f) The same data as (e) in
scaling form.
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curve [cf. Fig. 3(b)]. With both T, and v thus deter-
mined, other critical indices may be evaluated from the
scaling plots of the respective thermodynamic quantities.

It is evident from Figs. 3(c) and 3(d) that the order pa-
rameter scales fairly well with the Ising values of the crit-
ical indices, v=1 and B=0.125. The scaling of the sus-
ceptibility, ¥, is somewhat worse in the subcritical branch
of the master curve, which is probably due to long corre-
lation lengths and slow equilibration in the ordered state.
Very similar scaling behavior is observed for the case of
stiff chains, o =2, and for different values of u (the plots
are not shown here). We believe that this behavior clear-
ly demonstrates that in 2D the second-order portion of
the phase diagram for equilibrium polymerization be-
longs to the Ising class of universality. This result could
perhaps be anticipated since the ordered state, consisting
of infinitely long rigid parallel rods, is doubly degenerate
on the square lattice. It is thus to be expected that the
type of lattice would affect the universality class of the
transition line (e.g., on a triangular lattice it would be
that of a ¢ =3 Potts model).

In Fig. 2(b) we also show the phase diagram in
coverage-temperature space. Here, the first-order por-
tion of the phase boundary shown in Fig. 2(a) has opened
up into a large coexistence region leaving only a relative-
ly small area of the pure ordered phase. The shape of this
phase diagram is quite similar to that predicted by Ken-
nedy and Wheeler [3], including the asymmetry of the
coexistence region. In Fig. 2(c) we show the variation of
the critical temperature with o; as the chains become
stiffer, T, rises monotonically.

B. Chain length distribution

As pointed out by Flory [11], the principle of equal
reactivity, according to which the opportunity for reac-
tion (fusion or scission) is independent of the size of the
participating polymers, implies an exponential decay of
the number of polymers of size / as a function of /.
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Indeed, at the level of mean-field approximation in the
absence of closed rings, one can write the free energy for
a system of liner chains [7] as

F

v

InP(l,T)+

=SP(L,T) , 2)
1

where the PDF for chain length [/ is denoted by P ([, T)
and kj stands for the Boltzmann constant. The density of
the system, 6, is then

6=SIP(L,T) . 3)
1

Minimization of Eq. (2) with respect to P(l, T), subject to
the condition Eq. (3), yields

P(l,T)xexp s (4)

av

l,,~6"%exp . (5)

v
2ky T

This result should be valid for sufficiently high-density 6
where correlations, brought about by the mutual
avoidance of the chains, are negligible. In Fig. 4 we show
a semilogarithmic plot of the PDF for chain lengths,
P(1,T), at various temperatures and verify that the pre-
dicted exponential dependence on !/ is nicely fulfilled. At
low temperatures, T =0.35-0.45, there are also visible
oscillations in P(/,T) at small chain lengths, /<20,
whereby even oligomers occur more frequently than odd
ones. This effect appears to reflect the fact that short cy-
clic chains are energetically favored and is an artifact of
the square lattice. The density dependence of the mean
length /,, however, deviates from the predictions. While
the mean-field result, Eq. (5), predicts [,, < 6'/2, a scaling
theory analysis suggests for the case of semidilute solu-
tion of chains [7],
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FIG. 5. Log plot of the dependence of mean
1 chain length /,, on total density 6 for D =2.
The slopes far from and near to the critical re-
gion are given by dashed and solid lines, re-
spectively.

could hardly be responsible for the observed discrepancy.

The dependence of the mean length /,, on inverse tem-
perature T~ 1, shown in Fig. 6, demonstrates that the ac-
tual /,, vs T relationship appears to be clearly of non-
Arrhenius type. Thus the expected slope v/2=1, which
is marked by a dashed line on the plot, holds on the aver-
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where in two dimensions, D =2, and with the critical ex-
ponents for self-avoiding walks [20], ¥y =4, v=2, one has
y=0.84375. It is clear from Fig. 5 that over a broad
range of density the power J may be observed, whereas at
higher density instead of slope y the measured values of
In(/,,) show a distinct curvature which happens immedi-
ately at the phase transition line. Although our model al-
lows the formation of rings, and we actually observe them
in the simulations, they occur comparatively seldom and

V. RESULTS: THREE-DIMENSIONAL LATTICES

When simulating the system on a cubic lattice one
should bear in mind that a triple degeneracy of the
ground state exists with the parallel rods pointing along
any of the three Cartesian axes. Moreover, a sort of a
smectic ordered state with each plane perpendicular to
some axis containing ordered parallel rods will be formed
at low temperature if the interchain interaction w be-
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FIG. 8. Variation of the maxima of the
8 specific heat (squares) and the susceptibility
(circles) with lattice size L for D =3. Both dot-
ted lines have slope 3.
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tween nearest-neighbor monomers does not differentiate
between pairs of rods which are parallel (in plane) or
which cross at right angles when they belong to neighbor-
ing planes. Viewing the nearest-neighbor energy bonds as
rough substitutes for the integral effect of longer range
interactions, one could assume that the w’s in both cases
would differ so that in the former case (parallel rods) w,
is somewhat stronger than the latter one, w,. Such an as-
sumption leads to a ground state consisting only of stiff
chains, parallel to one of the three axes, whereby the or-
der parameter in 3D, defined in Sec. IV, attains a value of
unity in the ordered state. In our simulations we have
studied both w, 7w, and w, =w, and find that for both
cases the order-disorder transition turns out to be first or-
der (Fig. 7). For small systems the behavior is rather
smooth, but for lattices of size L =12 an abrupt change
in the thermodynamic quantities of the system is ob-
served, reflecting a transition from a dense state of rigid
parallel chains to a less dense disordered state (a melt) of
chains with a great fraction of bends. The strongest evi-
dence for the first-order nature of the phase transition

1.3

can be obtained from the finite-size scaling behavior of
quantities, such as the specific heat (C) or the susceptibil-
ity (x) maxima at the transition temperature. It is well
known [18] that for a first-order transition such quanti-
ties should scale as «LP. Such behavior is indeed
demonstrated in Fig. 8, where the slopes of the data for
sufficiently large L are equal to 3. The phase diagrams in
3D, in both T-u and T-0 spaces are shown in Fig. 9. The
coexistence region is asymmetric and a pure, ordered
phase exists only for a very small region of high densities.
Superficially, the phase diagram u-T space in 3D resem-
bles that for 2D, but in 6-u space the region of pure or-
dered phase is even further compressed.

The PDF of chain lengths in the cubic lattice is shown
in Fig. 10 for several temperatures above and below the
transition temperature T, =0.38. Qualitatively, it is not
different from that in 2D, complying with the form of Eq.
(4). It turns out, however, that the average chain length
in the disordered regime above the transition temperature
is rather small, /,, =2-3, independent of the size of the
lattice. On the contrary, in 2D, where the transition is

FIG. 9. Phase diagram for the
3D system: (a) T, as a function
of coverage 0; (b) T, as a func-
tion of chemical potential p.
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FIG. 10. Probability distributions of chain
length above (dashed lines) and below the
phase transition temperature in a D =3 lattice
with L =10.
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continuous, the average chain length always matches,
and sometimes even exceeds, the lattice size L as the crit-
ical temperature is approached. It thus appears that the
occurrence of long chains in 3D is a relatively rare event,
even immediately at the phase transition line, although
the density changes thereby little.

The eventual formation of a sharp single-peaked PDF
below T, is illustrated in Fig. 10 as well. One should bear
in mind, however, that for these data the system has not
reached thermal equilibrium yet, so they merely reflect
the relaxation of the exponential form, Eq. (4), into a 8-
like distribution, characterizing the ordered state.

VI. CONCLUSIONS

In summary, we have determined the phase diagrams
for order-disorder transitions in a simple model for living
polymers. Due to the temperature-dependent flexibility of
the chains, as well as to the presence of intrachain and in-
terchain forces, as long as this transition is first order it
takes place simultaneously with a “rare-dense” polymer
solution transition, and with a drastic change in the de-
gree of polymerization. In 2D the phase boundary has a
tricritical point and the second-order portion of the
boundary belongs to the Ising universality class. In 3D
the transition appears to be first order for all values of the
chemical potential. An interesting feature of the phase di-

20

agrams which is found in both 2D and 3D is the existence
of a Lifshitz line which separates the higher-temperature
region of structured disordered phase from the region of
ordinary disordered phase at low temperature. In this
sense our system is similar to binary and ternary mixtures
containing surfactants [19].

The probability distribution function of chain lengths
in the state of disorder is found to have the expected ex-
ponential form. The average chain length dependence on
temperature and density, however, although qualitatively
in line, shows definite discrepancies with both mean field
and scaling theory predictions. In our opinion this can-
not be attributed alone to the presence of closed ring ma-
cromolecules, observed in the simulations, and it is hard-
ly due to the model adopted in the present computer ex-
periment. Clearly more work will be needed before the
adequacy of the theoretical description is fully estab-
lished.

ACKNOWLEDGMENTS

Technical assistance and helpful conversations with A.
Ferrenberg, M. Laradji, and H.-G. Evertz are gratefully
acknowledged. This research was supported by National
Science Foundation Grants Nos. Int. 9304562 and
DMR-9405018.

[1] R. L. Scott, J. Phys. Chem. 69, 261 (1965).

[2]1J. C. Wheeler, S. J. Kennedy, and P. Pfeuty, Phys. Rev.
Lett. 45, 1748 (1980).

[3]1S. J. Kennedy and J. C. Wheeler, J. Phys. Chem. 78, 953

(1984).

[4] G. Faivre and J. L. Gardissat, Macromolecules 19, 1988
(1986).

[5] K. M. Zheng and S. C. Greer, Macromolecules 25, 6128
(1992).

[6] J. Appel and G. Porte, Europhys. Lett. 12, 185 (1990).
[7] M. E. Cates and S. J. Candau, J. Phys. Condens. Matter 2,
6869 (1990).
[8] F. Oozawa and S. Asakura, Thermodynamics in the Poly-
merization of Proteins (Academic, New York, 1975).
[91 P. G. DeGennes, Phys. Lett. 38A, 339 (1972); J. des
Cloiseaux, J. Phys. 36, 281 (1975).
[10] J. C. Wheeler and P. Pfeuty, Phys. Rev. A 24, 1050 (1981).
[11] P. J. Flory, Principles of Polymer Chemistry (Cornell Uni-



52 MONTE CARLO STUDY OF SEMIFLEXIBLE LIVING POLYMERS 6441

versity Press, Ithaca, 1953).

[12] A. Milchev and I. Gutzow, J. Macromol. Sci. B 21, 583
(1982).

[13] G. F. Tuthill and M. Jaric, Phys. Rev. B 31, 2981 (1985).

[14] A. Milchev, Polymer 34, 362 (1993).

[15] G. 1. Menon, R. Pandit, and M. Barma, Europhys. Lett.
24, 253 (1993).

[16] A. Baumgartner, J. Chem. Phys. 84, 1905 (1986).

[17] Y. Rouault and A. Milchev, Phys. Rev. E 51, 5905 (1995).

[18] See, e.g., Monte Carlo Methods in Statistical Physics, edit-
ed by K. Binder (Springer-Verlag, Berlin, 1979).

[19] M. Laradji, H. Gou, and M. J. Zuckermann, J. Phys. Con-
dens. Matter 6, 2799 (1994).

[20] P. G de Gennes, in Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1979), Chap. 1



